

Electromagnetic Formation Flight (EMFF) and Applications to TPF

TPF Expo

October 14-16, 2003

David W. Miller
Associate Professor
Director, Space Systems Laboratory
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

millerd@mit.edu

http://ssl.mit.edu

http://cdio-prime.mit.edu

Presented by: Laila M. Elias Graduate Research Assistant

Outline

- Motivation
- Fundamental Principles
- Mission Applicability
- MIT EMFFORCE Testbed
- Conclusions

Motivation for EMFF

Traditional propulsion uses propellant as a reaction mass

Advantages

- Ability to move center of mass of spacecraft
 (Momentum conserved when propellant is included)
- Independent (and complete) control of each spacecraft

Disadvantages

- Propellant is a limited resource
- Momentum conservation requires that the necessary propellant mass increase exponentially with the velocity increment (ΔV)
- Propellant can be a contaminant to precision optics
- Is there a technique that does not consume propellant?
 - Electromagnetic Formation Flight (EMFF)

A Candidate Solution

- Yes, inter-spacecraft forces can be used!
 - ... provided it is not necessary to alter the center of mass of the system.
- What forces must be transmitted between satellites to allow for all relative degrees of freedom to be controlled?
 - In 2-D, N spacecraft have 3N DOF, but we are only interested in controlling (and able to control) 3N-2 (no translation of the center of mass)
 - For 2 spacecraft, that's 4 DOF:

- (1)-(3) can be controlled using inter-spacecraft axial forces
- (2)-(3) can be controlled using reaction wheel torques
- (4) requires inter-spacecraft transverse forces, which can be created using electromagnetic dipoles

EMFF Concept

Axial forces maintain steady array rotation

Transverse forces initiate array spin-up

- Each vehicle has 3 orthogonal electromagnetic coils.
- In the far field, dipoles add as vectors.
 - 3 vector "components" on each vehicle form one "steerable" magnetic dipole
 - Electronic steering decouples the coils from the spacecraft rotational dynamics
- A reaction wheel assembly with 3 orthogonal wheels provides counter torques to maintain attitude

How Far Apart Will They Work?

Axial force generated by a set of coils:

$$F \sim 31.2 (M_C R_C)^2 \frac{1}{s^4}$$

The graph to the right shows a family of curves for various products of M_C and R_C

$$\frac{3}{2}(10^{-7})\left(\frac{I_{\rm c}}{\rho}\right)^2 = 312 \frac{{\rm m}^3}{{\rm kg-s}^2}$$

$$\frac{3}{2}(10^{-7})\left(\frac{I_{\rm C}}{\rho}\right)^2 = 31.2 \frac{{\rm m}^3}{{\rm kg-s}^2}$$

Example:

- 300 kg satellite, 2 m across, needs 10 mN of thrust, want $M_{\rm C}$ < 30 kg
- EMFF effective up to 40 meters
- 6MA/cm² extends to 560 meters

Satellite Formation Spin-Up

- Spin-up/spin-down
 - Spin-up to rotating array
 - Spin-down to reoriented baseline
- Electromagnets (EMs) exert forces/torques on each other
 - Equal and opposite "shearing" forces
 - Torques in the same direction
- Reaction wheels (RWs) are used to counteract EM torques
 - Initial torque caused by perpendicular-dipole orientation
 - RWs counter-torque to command EM orientation
 - Angular momentum conserved by shearing of the system

Satellite Formation Spin-Up

- Spin-up of complex formations can also be achieved using magnetic dipoles.
- Formations are not restricted to linear arrays!

Video: 600 kg s/c, 75m diameter formation, 0.5 rev/hr

3-D Formations

• We also have the ability to solve for complex 3D motion of satellites.

Video: Complex 3-D Motion

EMFF Applications

Sparse Apertures

Distributed Optics

EMFF Secondary Mirrors

Cluster Reconfiguration

Docking

TPF Case Study

- Not viable option
- **PPTs and Colloids** Higher I_{sp}
 - still significant propellant over mission lifetime
- FEEPs Best for 5 yr mission lifetime
 - Must consider contamination issue
 - Only 15 kg mass savings over EMFF @ 5 yr mark

- *EM coil* (R = 4 m) (M_{tot} = 3971 kg)
 - Less ideal option when compared to FEEPs even for long mission lifetime
- *EM Super Conducting Coil* (R = 2 m) ($M_{tot} = 3050 \text{ kg}$)
 - Best mass option for missions > 6.8 years
 - No additional mass to increase mission lifetime
 - Additional mass may be necessary for CG offset
 - Estimated as ~80 kg

EMFForce Testbed Overview

- 2-D testbed traceable to 3-D
- Exercise all controllable degrees of freedom
- High temperature superconducting wire (HTS)
 - Operates at 9kAmps/cm² (Capable of 13kAmps/cm²)
 - HTS demonstrations at 6MAmps/cm²
 - 100 wraps, Outer diameter ~0.8 m, Operates at 77K
- Four D-cells drive 70 Amps for 40 minutes

Video: Validation of Degrees of Freedom

Note: to hear audio narration, turn on your computer's sound.

Conclusions

- Many types of missions can benefit from propellantless relative control between satellites
 - Provides longer lifetime (even for aggressive maneuvers)
 - Reduces contamination and degradation
- Optimal system sizing has been determined for relatively small satellite arrays. Currently larger formations are being investigated
- Preliminary validation with the MIT Testbed has been achieved, and more complex maneuver profiles will be accomplished with future upgrades